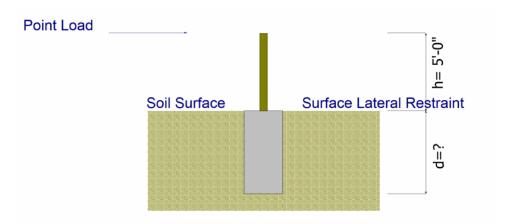


POLE FOOTING EMBEDDED IN SOIL MODULE

SEL Verification Example Series Author: ENERCALC Engineering Divison

Version: 2025 - V1


Hand Calculation

Problem Statement:

Determine minimum footing embedment, d, with given information below

Circular Footing Diameter $b\coloneqq 2.5 \ ft$ Lateral Point Load 0.6 W $P\coloneqq 1800 \ lbf$ Lateral Load Height Above Footing $h\coloneqq 5 \ ft$ Allowable Lateral Passive Pressure $pp\coloneqq 100 \ \frac{psf}{ft}$

Top of Footing is constrained per IBC 2021 - 1807.3.2.2

Solution:

Step 1: Start by assuming a depth, then check the assumed depth against the calculated depth

For constrained footing, S3 is calculated for the full depth of footing.

Trial #a, Assume da = 8ft

$$da \coloneqq 8 \ \mathbf{ft}$$

 $S3a \coloneqq pp \cdot da$
 $S3a = 800 \ \mathbf{psf}$

Calculate minimum depth, d (ft) based on the assumed da

$$d \coloneqq \sqrt[2]{\left(\frac{4.25 \cdot P \cdot h}{S3a \cdot b}\right)} = 4.373 \ \mathbf{ft}$$

$$d=4.373 \ ft$$
 < $da=8 \ ft$

Calculated depth of 4.373 ft is smaller than the assumed embed depth of 8ft. The value can be used and it produces a safe design. However, to calculate the minimum embedment, we need to re-iterate with a smaller assumed embed depth, db.

ENERCALC POLE FOOTING EMBEDDED

SEL Verification Example Series Author: ENERCALC Engineering Divison

Version: 2025 - V1

Step 2: Re-iterate with assuming d value smaller than da from step 1 Trial #b. Assume db = 4.373 ft

$$db \coloneqq 4.373 \ \mathbf{ft}$$

 $S3b \coloneqq pp \cdot db$
 $S3b = 437.3 \ \mathbf{psf}$

Calculate minimum depth, d (ft) based on the assumed db

$$\boxed{d} := \sqrt[2]{\left(\frac{4.25 \cdot P \cdot h}{S3b \cdot b}\right)} = 5.915 \ \mathbf{ft}$$

$$d = 5.915 \ ft > db = 4.373 \ ft$$

Calculated depth of 5.915 ft is larger than the assumed embed depth of 4.373ft. This design is not safe. Hence, we need to re-iterate with a larger assumed depth. This process must be repeated until the assumed depth converges to equal the calculated depth. That will be the solution to describe the minimum requiered embed

Step 3: Re-iterate with assuming d value larger than db from step 2 Trial #c, Assume dc = 5.35 ft

$$dc \coloneqq 5.35 \ \mathbf{ft}$$

 $S3c \coloneqq pp \cdot dc$
 $S3c = 535 \ \mathbf{psf}$

Calculate minimum depth, d (ft) based on the assumed dc

$$\boxed{d} := \sqrt[2]{\left(\frac{4.25 \cdot P \cdot h}{S3c \cdot b}\right)} = 5.348 \ \mathbf{ft}$$

$$d = 5.348 \ ft = dc = 5.35 \ ft$$

The Calculated depth equals the assumed depth. Hence, the minimum embedment needed to support the applied lateral loads is **5.35 ft**.

It is important to note thet ENERCALC performs the iterations automatically until it converges on a solution that represents the min embed. Then the depth is rounded up slightly. Hence, ENERCALC reports the final value as **5.375 ft.**

See the following ENERCALC printed calculation report for comparison

Pole Footing Embedded in Soil ENERCALC Engr. Div. Project Title:

Engineer:

Project ID: **ENERCALC**

Project Descr: Verification Example

Pole Footing Embedded in Soil

LIC#: KW-06000215, Build:20.25.06.16 (c) ENERCALC, LLC 1982-2025 Licensed ENERCALC User

DESCRIPTION: Constrained Pole Footing

Code References

Calculations per IBC 2021 1807.3 Load Combinations Used: IBC 2021

General Information

Pole Footing Shape Circular Pole Footing Diameter 30.0 in Calculate Min. Depth for Allowable Pressures

Lateral Restraint at Ground Surface

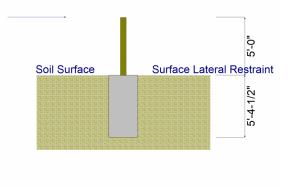
100.0 pcf 1,800.0 psf

Controlling Values

Governing Load CombinatieD+0.60W

Lateral Load 1.80 k Moment 9.0 k-ft

Restraint @ Ground Surface


Pressure at Depth

Actual 529.58 psf Allowable **537.50** psf Surface Restraint Force 5,358.14 lbs

Minimum Poqui	ired Denth	5.375	ft
Minimum Requi	irea Depin	5.3/5	ΙL

4.909 ft^2 Footing Base Area Maximum Soil Pressure 0.4074 ksf

Point Load

Project File: Pole Footing.ec6

Applied Loads

Lateral Concentrated Loa	ad (k)	Lateral Distributed Loads (k		Applied Moment (kft)	Vertical Load (k)
D : Dead Load	k		k/ft	k-ft	2.0 k
Lr : Roof Live	k		k/ft	k-ft	k
L : Live	k		k/ft	k-ft	k
S : Snow	k		k/ft	k-ft	k
W : Wind	3.0 k		k/ft	k-ft	k
E : Earthquake	k		k/ft	k-ft	k
H : Lateral Earth	k		k/ft	k-ft	k
Load distance above		TOP of Load above ground surface			
ground surface	5.0 ft	· ·	ft		
-		BOTTOM of Load above ground surface			
		· ·	ft		

Load Combination Results

	Forces @	Ground Surface	Required	Pressure a	at Depth	Soil Increase
Load Combination	Loads - (k)	Moments - (ft-k)	Depth - (ft)	Actual - (psf)	Allow - (psf)	Factor
D Only	0.000	0.000	0.13	0.0	12.5	1.000
+D+0.60W	1.800	9.000	5.38	529.6	537.5	1.000
+D+0.450W	1.350	6.750	4.88	482.8	487.5	1.000
+0.60D+0.60W	1.800	9.000	5.38	529.6	537.5	1.000
+0.60D	0.000	0.000	0.13	0.0	12.5	1.000